
1. Introduction

The bandwidth-packing problem is a combinatorial
optimization problem arising from telecommunication
networks where demand exceeds capacity and where
point-to-point calls with varying bandwidths are routed
on this network such that each call uses a single path.
These problems occur within ATM technology and
when video data is routed. It belongs to the broad class 
of multi-commodity flow problems that are commonly
associated with communication, computer, transporta-
tion, and distribution network applications. Calls 

between pairs of nodes define the commodities, and
links connecting nodes represent transmission lines in
the telecomm network. Given a set of calls with their
revenue and bandwidth requirements and an undirected
network with its fixed arc/link capacities and costs, the
problem is to assign calls from a request table to paths
such that network capacities are not violated and profit is
maximized.

When one can split a call among a variety of paths,
then the problem can be solved by linear programming
techniques. However, there are many telecommu-
nications problems (as well as applications out-
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side telecommunications, see Barnhart et al. [2000] )
where the commodity must be routed on a single path.
This additional requirement makes the problem NP
hard, and few papers address methodology to tackle
this problem. We present a technique that has become
popular recently for difficult, large 0-1 problems: that
of performing both column-generation and row-gener-
ation within a tree-search. We also include a heuristic to
improve bounds on the problem.

1.1 Problem Formulation

The bandwidth-packing problem (BWP) can be formu-
lated as a 0-1 integer-programming problem over a net-
work defined by nodes i and arcs or links l that connect
such nodes. A path consists of a route for a given call i
through a collection of links that connects a source
node si to terminal node ti. The objective function is to
maximize profit and the decisions to be made are
whether to route a given call and if routed, to determine
which of the multiple paths to pick to route the call.

Let the 0-1 decision variable xi j indicate whether call
i is routed on path j. Then the objective is to maximize
profit from assigning calls to paths, such that calls are
assigned at most once and link capacities are not violat-
ed. The profit of path j is defined as the revenue for call
i, ri, minus the total bandwidth cost of using the links in
path j (i.e., the profit of path j associated with call i is

equal to: is an indicator that

equals one whenever link l is used in path j, di is the
bandwith requirement (demand) of call i, and cl is the
per unit bandwidth cost of using link l. We assume that
there are n calls and m links in the network.

Then with the following notational definitions:

Call i: ri revenue for call i
di bandwidth requirement (demand) of call i

si, ti source node and terminal node of call i
Pi the set of paths for call i

Link l: capacity of link l, in bandwidth
ci unit cost of bandwidth on link l.

Variable: xi j l if call i is assigned to path j; 0 otherwise.

We obtain the integer linear optimization problem:

The first set of constraints insures that each call is
either routed or not, grouping the paths by call into non-
overlapping special-order sets. The second set of con-
straints is a collection of knapsack constraints that insure
no link capacities are violated. All variables for a given
call share a single coefficient (the bandwidth requirement
for the call) for each knapsack constraint. (Note that
xij = 1 is implied by the routing constraints, so explicitly
setting the upper bound to one is not necessary.)

1.2 A Small Example
We illustrate the problem structure with the follow-

ing problem (Fig. 1).

si = source node ti = terminal node
di = bandwidth demand r = revenue

2

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

1

) where
j j

m

i i l l l
l

r d cδ δ
=

− ∑

1, , 1, ,

max
j

i

i i l l i j
i n j P l m

r d c xδ
− ∈ −

 
− 

 
∑ ∑ ∑
" "

Telecommunications Network

Link (capacity, cost)

:
1 1, , calls --

i

i j
j S

Subject to
x i n

∈

≤ ∀ = ∈∑ …
routing constraints (SOS)

1, ,
1 1, , links --

j

i

l i i j l
i n j P

d x b mδ
= ∈

≤ ∀ = ∈∑ ∑
"

…
capacity constraints (KNAPSACKS)

{0,1} 1, . ,i j ix i n j P∈ ∀ = ∈…

Call si/ti di ri | Call si/ti di ri

Call Table

1 1/3 10 420 | 11 4/6 6 850
2 1/4 7 380 | 12 6/3 3 200
3 1/10 6 400 | 13 7/10 5 370
4 1/ 6 390 | 14 8/2 6 500
5 2/7 5 500 | 15 8/10 5 340
6 2/6 5 490 | 16 8/5 2 120
7 2/5 7 400 | 17 9/2 6 460
8 3/10 2 150 | 18 9/3 8 450
9 3/4 4 450 | 19 10/6 5 360
10 3/5 8 500 | 20 10/2 5 170

Fig. 1. ASample Telecommunications Network with Node Numbers, Link Numbers, Link Capacities and Link Costs Identified. Asample call table is also given.



This problem (Fig. 1) then translates to the following
A-matrix structure (Table 1) where there are a collec-
tion of special-ordered set constraints and a set of
knapsack constraints, where in each knapsack, all paths
(variables) associated with the call have the same coef-
ficient. The reason for this commonality is that, for a
given call, each of the paths uses the same amount of
bandwidth. In table 1 we note that paths P1 through P4
relate to call 1, paths P5 through P10 relate to Call 18
and paths P11 through P14 relate to call 14.

In this paper, we test our approach using the standard
data sets used in earlier work. All problems have the
same basic two data sets: a call table and a link table.
The call table lists the call’s source and destination
nodes, its demand, and its revenue in units of band-
width. The link table specifies for each link its adjoin-
ing nodes, its bandwidth capacity, and the cost per unit
of bandwidth using the link. We show the paths related
to only three calls (call 1: (node 1 to node 3), call 18
(9 to 3) and call 14 (8 to 2)) of this problem to illustrate
the structure of the A-matrix.

Since there is no requirement to route a call in this
formulation, only profitable paths need to be consid-
ered. While the number of nodes in the network typical-
ly will not be large (<40 nodes in our test problems),
the number of profitable paths increases quickly with
the number of links.

Parker and Ryan (1994) showed the bandwidth-
packing problem is NP-Hard since it contains a number
of 0-1 knapsack constraints as part of the entire con-
straint set.

Even for small networks, the number of possible
paths generated for each call through pure enumeration
can be enormous. Incurring this upfront cost of gener-
ating all such paths when most will not have any possi-
bility of being in the optimal solution is unnecessary.
Instead, one prefers to generate columns only as need-
ed, that is, only when they will improve the lp-solution.
This approach is known as “column generation” and
requires a “pricing” algorithm that either generates
such a column or proves that no such column exists.
Since the linear programming solution serves as an
upper bound on the solution value, one wants this upper
bound to be as close to the true integer solution as pos-
sible. One can tighten the linear programming relax-
ation by applying cutting planes that more closely
approximate the convex hull of the feasible integer
points.

Given a good upper bound on the solution value, one
must also have a good lower bound on the solution for
a bounding procedure such as branch-and-bound to
work efficiently. We employ an lp-based heuristic for
obtaining good lower bounds on the problem. This
paper will present a solution methodology that incorpo-
rates all of these techniques and uses a dynamic branch-
ing strategy based on setting many variables simultane-
ously to zero, to improve the overall search. We begin
by summarizing the prior research on this problem.
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

Link Paths RHS

SOS1 1 1 1 1 1
SOS2 1 1 1 1 1 1 1
SOS3 1 1 1 1 1
(1,3) 10 8 8 8 6 35
(1,8) 10 8 8 6 40
(1,2) 6 6 6 6 25
(1,9) 10 10 8 6 6 20
(3,8) 10 10 10 8 8 8 6 20
(9,8) 10 8 8 8 6 20
(9,6) 10 8 8 6 15
(6,8) 10 8 8 6 10

Table 1. A-Matrix for the sample problem in Fig. 1



1.3 Previous Work on This Problem

Initial work on the bandwidth-packing problem
focused on heuristic methods. Cox et al. (1991)
described the problem for dynamic call routing where
the bandwidth-packing problem is solved as a sub-
problem. They did not envision the number of nodes in
the network to be large (30 to 50 nodes) but the number
of calls could be as high as 100. Even in sparse networks,
the number of different paths possible for a single call
can be quite large. Also, the number of possible routes
increases with the density of the network. Cox et al.
used a genetic algorithm and permutation based
approach to path assignment. Each potential solution is
represented as a permutation of an ordering of the calls
and is evaluated by assigning the shortest path available
after previous calls in the ordering are routed. Anderson
et al. (1993) also used a permutation approach but with-
in a tabu search. Laguna and Glover (1993) developed
a non-permutation tabu search algorithm, where poten-
tial solutions are evaluations of changes in path assign-
ment for a given call. Gavish and Altinkemer (1990)
and Fischer et al. (1994) used Lagrangian Relaxation to
obtain good feasible solutions to special cases of the
bandwidth-packing problem. Amiri and Barkhi (1999)
consider a multi-hour bandwidth-packing problem and
also use Lagrangian Relaxation to obtain heuristic solu-
tions to their problems. A number of recent papers have
examined how to assign calls to links to minimize the
queueing delay when arrivals are stochastic: see
Rolland et al. (1999) and Amiri et al. (1999).

Since our paper is concerned with proving optimali-
ty to difficult bandwidth-packing problems, we spend
more time examining the prior work on exact methods.
Parker and Ryan (1994) describe a column-generation
branch-and-bound procedure (also known as branch
and price).

The problem was formulated as an integer program-
ming problem by applying column generation based on
the linear programming relaxation imbedded in a
branch and bound procedure. Their branching strategy
chooses a certain fractional path for a given call. They
then create k + 1 branches. On k of these branches, they
stipulate that the call cannot use arc/link
j ( j = 1...k). The k + 1st leaf requires that the call not
use any of the arcs/links. They dynamically set the opti-
mality tolerance and solve all but two instances of their
problem set within 95 % of optimality. They prove
optimality to only two of these fourteen problems,
however. Parker and Ryan do not use cutting planes.

Park et al. (1996) embed cutting planes based on lift-
ed minimal covers (see Padberg 1975) within column

generation to create the lp-relaxation, and incorporate
these cuts into a branch-and-cut procedure. Cuts were
not generated within the tree unless the branch-and-
price routines failed to prove optimality within a rea-
sonable period of time. Then, cutting plane routines
were also employed in the branching tree. The authors
employed a traditional xi j = 0/1 branching strategy;
however, for comparison they implemented a simpli-
fied version of Parker and Ryan’s approach and showed
that the use of cutting planes substantially improves
solution times for either branching rule. We note that
the test-set of problems used by Park et al. were ran-
domly generated problems and appear to be much eas-
ier to solve than those presented in the Parker and Ryan
or those in the Glover and Laguna papers.

Recently, two other papers use a branch-cut-and-
price algorithm for the bandwidth-packing problem.
Barnhart et al. (2000) again use lifted minimal covers
within a branch-cut-and-price approach. Their branch-
ing strategy is different from that of either Park et al. or
Parker and Ryan. They identify a call that is split
between two paths and then identify the node such that
prior to that node the two paths are identical, and call
this sub-path s. They call this node the divergence node,
labeled d, and the two arcs that cause the divergence a1

and a2. They partition all arcs leading from divergent
node d into two disjoint partitions such that one set A1

contains a1 and the other set A2 contains a2. On one
branch all paths that contain subpath s and any arc in A1

are set to zero and on the other branch all paths that
contain subpath s and any arc in A2 are set to zero.
Thus, this branching approach has two properties: (1)
it is easy to generate new paths for a call without
changing the pricing of new columns and (2) many
variables (paths) might be fixed to zero on a single
branch. They use a depth-first tree search in order to
obtain good feasible solutions early in the search. They
discovered that on many branches the objective func-
tion changed little because of the symmetry in the prob-
lem. They therefore incorporated lifted cover inequali-
ties and perform this lifting based on the algorithm of
Gu et al. (1995). We note that the authors do not use the
special-ordered sets to strengthen these cuts. The suc-
cess of these authors was impetus for us to see if pro-
viding stronger cuts and providing a heuristic might
improve upon their results.

Finally, Geffard (2001) also uses a branch-cut-and-
price approach. Here, the minimal covers are not lifted
but a heuristic is used to obtain good bounds. The
authors branch on arcs for a specific call, similar to one
of the three branching strategies that are employed in
this paper. We will discuss this branching strategy later.
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Their testing showed that using a heuristic enhanced
the performance of their code significantly.

1.4 Contributions of This Paper

In our view, the contributions of this paper include: 

(1) the incorporation of much stronger cuts into a
branch-cut-and-price code for the bandwidth-
packing problem. These lifted minimal covers
with special-ordered sets are easily incorporated
into the pricing algorithm and, whenever a new
path is generated for a given call that uses a link
not previously used by any paths for that call, the
variable (path) is lifted into all cuts associated
with that link. This lifting calculation is inexpen-
sive to perform.

(2) the inclusion of a dynamic branching strategy
that does not require significant changes to the
pricing algorithm.

(3) the inclusion of an lp-based heuristic that quick-
ly finds very good solutions and is capable of
being used throughout the tree.

(4) the solution of previously unsolved problems in
the standard test-set of bandwidth-packing prob-
lems.

(5) a small example that illustrates the need for gen-
erating all optimal solutions to the linear pro-
gramming problems on each branch.

1.5 Outline

The remainder of this paper is organized as follows.
Section 2 describes each sub-algorithm of the branch-
cut-and-price code. Section 3 provides computational
results on two published sets 13 of test problems.
Section 4 provides conclusions and avenues for future
research.

2. Solution Methodology

Since pricing and cutting are complementary proce-
dures for tightening an lp-relaxation, our method
generates both columns and cuts throughout a branch
and bound tree. Because there are too many possible
columns to handle efficiently and most of them will
have their associated variable equal to zero in an opti-
mal solution, a more efficient approach than enumera-
tion is to start with only a small subset of the feasible
columns and then add others as needed. This process is
called “pricing” and uses reduced-cost information to

add columns only when they can improve the linear
programming solution value.

Likewise, as the above discussion has highlighted,
adding cutting planes based on the polyhedral structure
of the 0-1 polyhedron is a very efficient way of tighten-
ing the linear programming approximation to the inte-
ger-programming problem.

In addition, we add an lp-based bounding heuristic to
obtain a good ip-lower bound early and we attempt to
update this bound whenever columns and cuts are gen-
erated. Having both a good upper bound and a good
lower bound allows variables to be fixed based on the
“gap” (i.e. the difference between the lp-solution and
the best-known feasible solution).

The basic algorithm begins by solving the lp-relax-
ation of the BWP problem with only a subset of paths
Si – Pi per call. Then, for each call, we generate
columns (paths) based on dual prices. When no addi-
tional columns will improve the lp-solution, we begin
generating cutting planes for each link constraint cou-
pled with the entire set of special-ordered set (SOS)
constraints. These cutting planes are considerably
stronger than those generated when the SOS constraints
are ignored. We continue cycling through cut genera-
tion and column generation until we can find no addi-
tional cuts or columns to improve the lp-solution. At
this point, we perform tree search where at each branch
of the tree, we again employ both column and cut gen-
eration. In addition, we employ an lp-based heuristic
within the branching tree. Figure 1 presents the overall
algorithm. We present each of the sub-algorithms
below.

2.1 Solving the First Linear Program

Our approach to generating columns is similar to that
of prior authors. For the first linear program, we use the
cost on the links to determine at least one shortest path
for each call. Where the solution to the shortest path 
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Fig. 2. Column Generation/Branch & Cut Algorithm for BWP Problem

Step 0 Initialize with a set of paths for each call and solve the lp-relaxation 
problem

Step 1 Generate columns until no columns exist that can improve the
lp-solution

Step 2 Generate cutting planes until no violated inequalities can be found
Step 3 Get a good feasible solution to the ip-problem using a lp-based

heuristic
Step 4 If ip-solution = lp-solution, stop
Step 5 Test if a column exists that can improve the current lp. If so, go to

Step 1
Step 6 Initiate branch-and-cut, repeating steps 1-4 on each node of the

branching tree



problem is not unique, we generate all shortest paths.
For data sets where the link costs were nonzero, there
was usually only one or two optimal paths per call.
However, for data sets where the link costs were all
zero, generating all shortest paths generated many per
call, so we only added up to 5 paths (columns) per call
in the initial formulation of the linear program.
However, prior to branching, we added all paths of a
call that had a reduced cost of zero. This approach is
different from Parker and Ryan who use only one short-
est path for the problem, or Park et al. who use a
k-shortest path algorithm (but in most of their paper
report test results for k set equal to 1). Given at least
one path for each call, we solve the first lp. We now
present the general pricing algorithm which is per-
formed after every lp call.

2.2 Generating Columns

By lp-duality theory, the lp-solution is optimal if and
only if the dual solution is feasible. If any of the dual
constraints are not satisfied for any call, then there
exists a column or columns that would have been in the
basis had they been in the lp-relaxation. We use the
same column generation scheme as Parker and Ryan. It
is briefly described here. Let yi denote the dual vari-
ables corresponding to the routing constraints, zl and
the dual variables corresponding to the capacity con-
straints yi, and let Si denote the current subset of paths
in the lp-relaxation. Call this problem LPS.

The solution to the lp-relaxation using a subset of
paths S, (LP S ) is optimal for the lp-relaxation LP P if
and only if the dual solution returned by the simplex
method is feasible for the dual of LP P. The dual con-
straint associated with variable xi j (corresponding to
call i using path j ) is:

where δl j = 1 if link l is in path j; 0 otherwise.
We must determine whether a path j for call i is in the

path set Pi, but not in our generated paths Si, could
improve the LP S solution. The column-generation sub-
problem associated with call i is therefore:

where y*
i and z*

l are the dual values returned by the
simplex method in the current lp-relaxation. Thus,
given a network with link weights di (z*

l + cl), one finds
the shortest path from the source node to the destination
node of call i. If the solution to this shortest path prob-
lem has path lengths less than ri – y*

i , the current
lp-solution is not optimal. Path j should be added to the
problem and the linear program re-solved. Since link
weights are non-negative, a modified Dijkstra's (see
Dial et al. 1979) algorithm can be used to find the short-
est path(s) for the column-generation subproblem. We
also note that by generating all shortest paths for all
calls, we are likely to limit the number of times that the
pricing routine will need to be called.

Our formulation of the column-generation subprob-
lem differs from Parker and Ryan’s in that we have a
third set of dual variables corresponding to the dual
prices on the cut constraints. Since our cuts are based
on capacity constraints, and since capacity constraints
relate to individual links, the cuts we generate add an
additional cost to each link in the shortest path. It is
therefore straightforward to augment the shortest path
problem with these dual prices.

Specifically, if K is the number of cuts so far gener-
ated, where πi k is the coefficient for call i in cut k, and 
π0 k is the right-hand-side value of the cut constraint,
then we denote the cut in the following form:

where wk will denote the dual variable corresponding to
cut-constraint k.
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Then the column-generation subproblem associated
with call i is:

From this formulation of the shortest path problem,
we see that the weights on each arc/link become

As will be seen in the next sec-

tion, the cuts we generate relate to the capacity of any
link and are based on minimal covers for the capacity
constraints (knapsacks) in the problem. Once a cut
is generated for a call that uses that link, the coefficient
πikl

in the cover is included in that link’s cost in the
shortest path problem. If the solution to this shortest
path problem is less than ri – y*

i , then the current lp-
solution is not optimal and we have found another path
to add to the problem.

2.3 Generating Cuts
Once the lp-relaxation is dual feasible, cutting plane

constraints are generated and added to the lp-relaxation
to better define the feasible integer solution space.
When incorporated into a branch- and-cut procedure,
these additional constraints reduce the solution space
for the linear programming relaxation, while not cut-
ting off any portion of the solution space that contains
a feasible integer point. We used facial cuts similar to
those described in Hoffman and Padberg (1991) and
Crowder et al. (1983). We also exploit the fact that all
paths for a call that use the same link have the same
coefficient in the capacity constraint. This fact coupled
with the fact that only one path can be chosen assures
that the lifting coefficient on every such path is equal.
Thus, one can find the lifting coefficient for every path
of a given call by performing only one optimization!
This result is a direct application of the theorem of
Johnson and Padberg (1981) that provides a strong lift-
ing procedure when one considers knapsacks with
disjoint special-ordered sets.

Minimal-covers are generated based on the link
capacity constraints and the set of special-ordered-set
constraints:

In a manner similar to that described in Hoffman and
Padberg (1991), we project out variables at both zero 

and at one. We then solve the knapsack problem with
special-ordered sets only over the fractional variables.
We then sequentially lift back any fractional variables
not in the minimal cover, then all variables projected
out at one, and finally those at zero.

Specifically, we consider some link l and let x*
ij be the

optimal solution to the current lp-relaxation. Define the
following sets over the variables xi j that use link l:
Q1 = {x*

ij|x*
ij = 1}, Q0 = {x*

ij|x*
ij = 0}, and QF = {x*

ij|0 < x*
ij

<1}. Also, let the set Ti be the set of calls for which there
is at least one x*

ij fractional. We then solve the following
minimal-cover problem:

If ξ < 1, then a valid inequality has been found which
cuts off x*

ij. We note that since all paths for this call that
use this link require the same bandwidth, each such path
has the identical coefficient value in the link-capacity
constraint. Thus, if any path for this call is part of the
minimal cover, then all paths for that call that use this
link will also be part of the cover with the same
cut (cover) coefficient. We can therefore perform the
“lifting” of new paths that use a specific link into an
existing minimal-cover constraint with virtually no addi-
tional computational effort.

In cut generation, we use strong lifting to tighten the
problem. Once a minimal cover is found, we lift back
any fractional variables that were not in the original
cover, then lift back the variables that were projected out
at one (see Wolsey, 1975 for details) and then lift back
the variables at zero (see Padberg, 1975). Since these lift-
ing procedures are sequential, different lifting orderings
will generate different facets. We vary the order and
generate up to five lifted minimal-cover inequalities for
each link-capacity constraint.

We also lift newly generated paths (new columns in
our lp-formulation) into the existing cuts because the
special structure of this problem allows us to lift all paths
for a call simultaneously. We can do this since the coef-
ficient in the knapsack constraint is the same for all such
paths. Thus, from the Johnson and Padberg result, we
know that all such variables will have the same lifting
coefficient. We keep track of whether a call has any paths
that use a specific link. If, at some future time, we gen-
erate a new path for a call that uses a link previously
unused for that call, we lift this new path into all cuts that
are associated with that link. Thus, even as the dimension
of the problem expands, we are able to maintain cuts
based on the facial structure of this higher-dimensional
polyhedron.
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2.4 A lp-Based Heuristic

A good feasible solution provides a lower bound to the
problem. Parker and Ryan documented the value of
having a good lower bound early. When they fed their
algorithm the best known solution obtained by Anderson
et al., problems were solved faster and/or the solution
quality improved in most cases. We therefore created a
lp-based heuristic which we call after every round of
column and cut generation at the top of the tree. Within
the tree, we call the heuristic before exiting the branch.
Establishing a lower bound early on has several advan-
tages. Variables can be fixed based on their reduced cost
and the gap between the lp-optimal and ip-optimal
solution-values. Fathoming rules can be applied earlier
to prune nodes from the enumeration tree. Also, if the
user requires a solution to within a specified tolerance,
the entire algorithm can be terminated as soon as the
lower and upper bounds differ by less than this tolerance. 

The heuristic uses the current lp-relaxation in a proce-
dure similar to the “Dive and Fix” algorithm described
by Wolsey (1998). First, the heuristic fixes variables cur-
rently at 0 in the current lp-solution to 0 and variables
at 1 to 1. Then it sets all fractional variables with lp-solu-
tion values greater than 0.7 to 1, or if none > 0.7, it
selects the fractional variable closest to 1, fixes it to 1,
and re-solves the linear program. One of three cases will
result: (1) the solution is integer—stop and save this
solution if it is better than the previous best ip-solution;
(2) the lp is infeasible—stop; or (3) the linear program is
feasible but the solution is not integer—repeat. We
repeat, fixing variables and re-solving until the set of
unfixed fractional variables is no more than 12. Given
that it is quite fast to completely enumerate the 212

possibilities, we enumerate and choose the best of all
feasible solutions.

At the top of the tree before initiating branching, we
do a rigorous search for good ip-solutions easily avail-
able from the current lp-relaxation. We begin by fixing
all variables at 0 to 0 and all variables at 1 to 1. Then,
each fractional variable greater than 0.5 is, in turn, is set
to 1. This lp is solved and then the lp heuristic described
above is performed. Since the order in which fractional
variables are set to 1 matters, repeating the lp-heuristic
for each “candidate” variable (x*

ij > 0.5) searches for
ip-solutions from the most likely set of variables.

In our experiments the heuristic often found the
optimal integer solution at the top of the tree or early
within the branching tree. The rigorous heuristic at the
top of the tree significantly improved the quality of the
ip-solution in most cases. For comparison, we sent the
lp-relaxations at the top of the tree to ILOG CPLEX 8.0

(2002) to solve the integer program. CPLEX often vis-
ited several hundred nodes before finding the optimal
solution. Also, because we were not dependent on a
branching rule to find good feasible solutions, we chose
to use the node having the best (i.e., largest) objective
function value; we call this a best-node search of the
branching tree. Both Park et al. and Barnhart et al. use
depth-first search in order to find feasible solutions.

2.5 Branching

We begin branching when no additional columns can
be found that improve the lp-solution and we cannot
find any cuts that cut off the current fractional value.

Our branching strategy is rather different from those
used in the past. Park, Kang, and Park used traditional
branching in their branch and bound algorithm, where
each node in the tree opens two new branches; one forc-
ing the selected xi j to 1 and the other to 0. When xi j is
forced to 1, this is a very strong branch since all other
paths for that call are set to zero. However, the other
side of the branch, when xi j is set to 0, is very weak.
This branching scheme also impacted their pricing
scheme. Often, they would generate a column that they
would have to discard because it violated the branching
constraints.

As described earlier, Barnhart et al., chose a branch-
ing strategy that tried to alter the objective value on
both branches of the current node, and also assured that
their shortest path calculations were not harmed by this
branching scheme. We use a different branching rule,
which also maintains these positive characteristics. 

Since we already have a good ip-lower bound, we
search the tree using the best node and use a hybrid
branching strategy to select the branching variable and
rule. The hybrid strategy uses one of three branching
schemes based on which one indicates that it will alter
the lp-bound on both new branches.

There are three possible branching rules:

(1) Choose a call i, and on one side, force this call into
the solution and on the other side specify that this 

call will not be routed.

side of the branch for some

call i.)

(2) Choose a call i, and choose a capacitated link l
based on its dual price. On one branch, we specify
that this call must use link l and on the other side,
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we specify that this call cannot use link l.

and link l.)

(3) Choose a path ij for call i that is fractional and
branch on that path. (xi j = 0 on one side of the
branch, and xi j = 1 on the other for some call i and
path j.)

We have listed these branching rules in the order that
they are applied in the algorithm. First, we check if
there is slack on any of the routing constraints. If so,
we branch on the call with the most slack. On one side
of the branch, we change the constraint from an
inequality to an equation and on the other side we force
all paths for that call to be zero. This forces the linear
program to decide whether or not to route the call.

When all routing constraints are tight, we identify
the fractional variable xi j closest to 0.5 and its most
capacitated link l. We then specify that either the call
uses this link or it does not. This is equivalent to saying

on the other. Thus, instead of only fixing one variable,
we fix a set of variables on each side of the branching
tree. To prevent paths that use this link (on the branch
that does not allow such paths), we set the link weight
for link l to infinity. Similarly, if we wish to generate
more paths that use this link, we can generate a short-
est path from the source of call i to link l, and then a
shortest path from link l to the destination of call i.

Finally, if the selected variable xi j is the only path for
call i that uses link l, then we do the traditional branch-
ing on variable xi j.

3. Importance of Generating All Optimal
or Assuring That Every Branch Has a
Feasible Linear Programming Solution

We now discuss why one needs to generate all opti-
mal solutions to the linear programming problem with-
in the branch and bound tree. All rules for column-
generation procedures that we are aware of require only
that one obtain an optimal solution at the top of the
branching tree and that one use the normal fathoming
strategies within the tree: fathom if (a) the linear
programming problem is infeasible, (b) the linear

programming problem produces a feasible integer
solution, or (c) the linear programming solution
provides an answer worse (or at least not better than)
the best known integer solution.

We present a simple example that shows that using
the standard rules (those currently published in virtual-
ly all) column generation papers is insufficient to
guarantee optimality. Specifically, the literature states
that one need only show that there is no column that
improves the objective function (i.e., that the bound at
the top of the tree is a proper bound). Once one has
obtained this bound, one can then branch on a fraction-
al variable and, if one then gets a proper bound at each
node in the branching tree, when the tree is fathomed,
one has obtained the optimal solution to the overall
problem. We present a simple (seven variables, three
constraints) set-partitioning problem that—when
following these standard rules for branching and
fathoming—does not generate the columns needed to
find the optimal solution. Thus, the standard algorithm
would conclude that there are no integer feasible
solutions to a problem that has multiple optimal integer
solutions.

All rules for column generation procedures that we
are aware do not discuss this problem. In Barnhart et al.
(1998) they mention that the initial restricted master
problem must have a feasible lp-relaxation to ensure
that proper dual information is passed to the pricing
problem. However, they do not indicate that one needs
a similar requirement throughout the tree. Thus, it is
implied that once one has obtained an optimal linear-
programming solution at the top of the branching
tree, one can use the normal fathoming strategies
within the tree: fathom if (a) the linear programming
problem is infeasible, (b) the linear programming
problem produces a feasible integer solution, or (c) the
linear programming solution provides an answer worse
(or at least not better than) the best known integer
solution. We note that adding artificial variables that
ensure that a feasible solution to the LP relaxation at the
top of the tree exists is not sufficient to not cut off
optimal integer solutions throughout the tree. Our
example will illustrate this point.

We present a simple example that shows that one
needs to be very careful about fathoming rules for a
column-generation approach. We present a simple
(seven variables, three constraints) setpartitioning prob-
lem that shows that a column-generation phase must
take place at each node of the branching tree—even
when the linear programming relaxation obtains an
infeasible or integer solution.
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3.1 Example:

Consider a set-partitioning problem with three con-
straints and where the possible columns are: (1,0,0),
(0,1,0),(0,0,1),(1,0,1),(1,1,0),(0,1,1), and (1,1,1). Let
the objective value for each column be equal to the sum
of the ones in that column,. The respective objective
function values are therefore (1, 1, 1, 2, 2, 2, 3). Now
all feasible solutions to this problem have objective
value = 3. Assume that one begins the column-genera-
tion process with the following three columns: (1,1,0),
(1,0,1) and (0,1,1). The linear program solution for this
three column problem is z* = 3 with a solution vector of
(1/2,1/2,1/2). Since the master problem has a feasible
lp-relaxation, one has proper dual information at the top
of the tree and there is no need to generate an artificial
column. Now, within the column generation process,
we find that all other columns have reduced cost of
zero, so no column can improve the objective function
value. We stop and decide to branch without generating
any new columns. We therefore choose to fix one of
these three variables (columns) to either one or zero
and “branch.” On each side of the branching tree, the
linear optimization has no feasible solution and we
conclude (incorrectly) that the problem has no feasible
points! This is clearly false.

max x1 + x2 + x3 + 2x4 + 2x5 + 2x6 + 3x7 branching:

s.t. x1 + x4 + x5 + x7 = 1

x2 + x5 + x6 + x7 = 1 x4 = 0 x4 = 0

x3 – x4 + x6 + x7 = 1 both are infeasible

This simple problem highlights that the current
literature has not completely specified what is needed
to guarantee that important columns have not been
ignored in a column-generation scheme. Instead of
using the “normal” branch-and-bound fathoming rules,
one must go through a column-generation phase at each
node. In the case where solving the linear program
provides an integer linear programming solution, one
can use the dual prices from this solution to start the
column-generation phase. In this case, the node will be
fathomed only if, after column-generation, the solution 

remains integer. In the case where one obtains an infea-
sible solution, one needs to add artificial variables that
make up a feasible solution (with the requisite high
cost) in order to obtain the dual prices needed to begin
the column-generation phase. If, after this column-
generation phase, the solution remains infeasible, the
node be fathomed.

4. Computational Results

The software developed to test these ideas was writ-
ten in C and runs on a PC in a Linux environment.
CPLEX 8.0 is used to solve the lps using the simplex
method with all preprocessing turned off. All problems
were run on Dell OptimPlax PC with Red Hat Linux
8.0 operating system. ILOG CPLEX 8.0 (2002)
Software Components library for Linux PC was used
for solving all linear programming problems. We used
none of the ILOG CPLEX integer programming com-
ponents—thus, all branching rules, cutting planes, pre-
processing and heuristic routines were written in C by
the authors of this paper.

For our computational experiments, we used a set of
10 problems generated by US West and obtained by
courtesy of Yuping Qiu. Since this set was also used by
Laguna and Glover, and Anderson et al. in their work
on the bandwidth-packing problem, we can draw com-
parisons to previous work. Laguna and Glover ran tests
on this set of problems with and without link costs,
while Anderson et al. show results only for the prob-
lems without link costs. IP1 through IP10 are the
original problems and we denote the set without link
costs with the letter z (e.g., IP1Z). We also ran tests on
14 problems (labeled DATA1 through DATA14) that
were used by Barnhart et al. (2000) in their work.
Among the two test bed sets, the problems range in size
from 10 to 31 nodes, 15 to 61 links, and 20 to 93 calls.
We present pictures of each of these problems in
Appendix A.

We present our computational results in the three
tables below. Table 1 presents our results. This table
provides the number of columns and rows generated at
the top of the tree and the linear programming relax-
ation (ZLP) and integer programming objective func-
tion value (ZIP) found at the top. We also indicate our
success in solving each of these problems under the
columns labeled “At Termination.”
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Table 3 shows the benefit of using a lp-based heuris-
tic to find a good integer lower bound on the test
problems. At the top of the tree before the rigorous
lp-heuristic was implemented, the best ip-solution
found was between 88.7% and 100% of the lp-solu-
tion, with the average for the test sets at 95.5 %. After
the rigorous heuristic, the average was increased
to 97.5 % (ranging from 94.6 % to 100 %). For test
problems with the largest gap (ZIP less than 95 % of
ZLP), performing the rigorous heuristic reduced the 

gap by an average of 5.4 percentage points. At the
top of the tree, the ip-solution found by the heuristic
was the optimal solution in 54 % of the problem sets
however; it often required considerable branching
to prove optimality. In four cases, we terminated
the branching at 3000 nodes and could not prove
optimality.

In Table 4, we present the prior best known solu-
tions found by other researchers and compare these to
the solutions that we obtained.
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Table 2. Computational results for BWP test sets without link costs

Problem Network/Call input At the top of the tree At termination
Nodes Links Calls Cols Rows ZLP ZIP ZIP @ node Cols Rows

Branches

DATA1 14 16 35 68 73 6650.0 6580 6580@TOT a 69 120 36
DATA2 24 24 68 87 95 7270.0 7270 Solves at TOT
DATA3 29 61 70 693 349 28738.1 27550 28270@218 1778 2928 3000* b

DATA4 18 29 58 340 153 16826.4 16190 16210@87 488 600 3000*
DATA5 19 25 47 165 84 7790.0 7790 Solves at TOT
DATA6 27 37 93 285 184 19053.8 18920 18970@426 308 614 862
DATA7 23 29 93 230 195 14109.1 13810 13880@131 307 465 716
DATA8 28 31 41 95 82 8825.0 8770 8770@TOT 100 127 11
DATA9 24 42 87 445 198 21486.8 21360 21360@TOT 700 452 404
DATA10 19 19 41 52 75 7810.0 7640 7640@TOT 52 140 106
DATA11 14 16 23 43 53 6110.0 6110 Solves at TOT
DATA12 27 36 81 283 160 13290.0 13290 Solves at TOT
DATA13 29 31 52 141 96 9020.0 9020 Solves at TOT
DATA14 20 23 46 118 90 8004.4 7900 7900@TOT 136 191 86
IP1Z 10 16 20 133 117 7783.6 7540 7540@TOT 169 617 116
IP2 21 39 20 208 65 2100.0 2100 Solves at TOT
IP3Z 31 42 50 414 221 14004.3 13570 13710@1284 669 2817 3000*
IP4Z 10 15 20 154 80 3035.7 2925 2955@38 158 548 114
IP5 16 22 20 194 108 2426.2 2295 2395@58 208 252 58
IP6Z 17 26 30 263 130 9319.2 8830 9010@280 267 1002 280
IP7Z 20 31 40 381 244 11235.0 11010 11160@316 428 2957 316
IP8Z 12 18 36 291 130 12810.0 12460 12560@46 372 2915 3000*
IP9Z 12 19 24 200 101 5780.0 5600 5780@4 200 107 4
IP10Z 14 22 28 222 128 1000.9 970 970@TOT 255 813 210

a TOT Stands for “Top of Tree,” ZIP@node denotes the node at which the integer solution was found.
b * Indicates the test problem was terminated early, before the optimal ip-solution was found and/or proven.
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Table 3. Quality of ip-solution at the top of the tree

ZLP at Top of ZIP before Tolerance ZIP after Tolerance
Tree rigorous rigorous

heuristic heuristic

DATA1 6650 6560 98.6 % 6580 98.9%
DATA2 7270 7270 100 %
DATA3 28738.1 26170 91.1 % 27550 95.9%
DATA4 16826.4 15540 92.4 % 16190 96.2%
DATA5 7790 7790 100 %
DATA6 19053.8 18920 99.3 % 18920 99.3%
DATA7 14109.1 13810 97.9 % 13810 97.9%
DATA8 8825 8770 99.4 % 8770 99.4%
DATA9 21486.8 20790 96.8 % 21360 99.4%
DATA10 7810 7640 97.8 % 7640 97.8%
DATA11 6110 6110 100 %
DATA12 13290 13040 98.1 % 13290 100%
DATA13 9020 9020 100 %
DATA14 8004.4 7900 98.7 % 7900 98.7%
IP1Z 7783.6 7530 96.7 % 7540 96.9%
IP2 2100 2100 100 %
IP3Z 14004.3 12420 88.7 % 13570 96.9%
IP4Z 3035.7 2770 91.2 % 2925 96.4%
IP5 2426.2 2295 94.6 % 2295 94.6%
IP6Z 9319.2 8830 94.8 % 8830 94.8%
IP7Z 11235 10780 95.9 % 11010 98.0%
IP8Z 12810 12280 95.9 % 12460 97.3%
IP9Z 5780 5500 95.2 % 5600 96.9%
IP10Z 1000.9 920 91.9 % 970 96.9%

Note: Bold values are optimal ip-solutions found at the top of the tree. However, in several cases of these cases, the solution was not proved opti-
mal until branching was complete. 



5. Conclusions

In this paper, we have combined the strengths of both
column generation and cut generation, exploiting the
special structure of the bandwidth-packing problem. It
is the first paper to use the strength of special-ordered
sets to strengthen minimal-cover cuts within a column-
generation setting, and we perform complete lifting. In
addition, we have implemented a dynamic branching

strategy that works well with our pricing algorithm.
This new branching strategy fixes many variables with-
in a single branch by again exploiting the special struc
ture of the problem. We have also incorporated a linear-
programming based heuristic that seems to find very
good solutions to the problem at the top of the tree. This
process is especially important when one is not trying
to prove optimality, but rather get measurably good
integer solutions quickly. This heuristic is usable
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Table 4. Comparison of best known solutions

Glover and Anderson Parker and Parker and Ours
Laguna et al. Ryan (starting Ryan (starting

with no ip with
lower bound) Anderson ip

lower bound)

DATA1 6580 6580 6580 6580
DATA2 7270 7270 7270 7270
DATA3 b 27990 27010 28330 28270
DATA4 16190 16190 16210 16210
DATA5 7790 7790 7790 7790
DATA6 18950 17810 18970 18970
DATA7 13840 13760 13880 13880
DATA8 8770 8770 8770 8770
DATA9 21360 21000 21360 21360
DATA10 7640 7640 7640 7640
DATA11 6110 6110 6110 6110
DATA12 b 13330* a 13230 13330* 13290
DATA13 9020 8950 9020 9020
DATA14 7900 7900 7900 7900
IP1Z 7540 7540 7540
IP2 2100 2100 2100
IP3Z c 13550 13270 13710
IP4Z 2955 2885 2955
IP5 c 2345 2365 2395
IP6Z 9010 9010 9010
IP7Z 11000 11160 11160
IP8Z d 12810 12810 12560
IP9Z 5780 5780 5780
IP10Z 970 970 970

a * Indicates that prior work reported an incorrect optimal solution for problem DATA12. Anderson reported a solution of 13330. Having
generated all feasible solutions via an enumeration procedure, we believe that no such solution exists. We believe that the best solution to this
problem is 13290.

b We also note that within our search-tree, which was truncated at 3000 nodes, the best solution found was 28270 for problem DATA3. We
could,not totally enumerate all feasible columns as we did in DATA12 because we ran out of memory after generating
only the columns for the first call. However, when generating 250000 columns for each call and sending this set of columns to ILOG's opti-
mization code CPLEX, the code found 36 the solution 28330. thereby confirming that the Parker and Ryan solution of 28330 is feasible and
the best solution known to date.

c We note that we have found better solutions to IP3Z and IP5 than had previously been reported.
d For problem IP8Z, we could not find the optimal solution within our 3000-node limit. We did confirm that the solution of 12810 is optimal 

through a complete enumeration procedure.



throughout the tree and can therefore use all of the infor-
mation that the column generation, cutting planes
and branching have provided. The use of this overall
algorithm allowed us to find better integer solutions to
certain problems than were previously known, allowed
us to prove optimality in certain problems, and also
showed some of the issues in implementing both column
generation and cut generation within a single software
package. If dual prices associated with cut  constraints 

are not included in the pricing problem for  column gen-
eration then columns that were previously generated are
likely to be generated again, increasing run time. Finally,
we provide a small example that shows that proving opti-
mality to a column-generation code is far more difficult
than previously imagined. Specifically, the linear pro-
gram must not only be solved to proven optimality, but
one must also generate all alternative solutions to ensure
that we do not overlook an optimal column.
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6. Appendix A. BWP Test Sets

These network test sets are those referred to in Tables 2 through 4 in Sec. 4.

Fig. A1: Test Set IP1.

Fig. A2: Test Set IP2.
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Fig. A3: Test Set IP3.

Fig. A4: Test Set IP4.
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Fig. A5: Test Set IP5.

Fig. A6: Test Set IP6.

Fig. A7: Test Set IP7.
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Fig. A8: Test Set IP8.

Fig. A9: Test Set IP9.

Fig. A10: Test Set IP10.
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Fig. A11: Test Set DATA1.

Fig. A12: Test Set DATA2.
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Fig. A13: Test Set DATA3.

Fig. A14: Test Set DATA4.
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Fig. A15: Test Set DATA5.

Fig. A16: Test Set DATA6.
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Fig. A17: Test Set DATA7.

Fig. A18: Test Set DATA8.
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Fig. A19: Test Set DATA9.

Fig. A20: Test Set DATA10.
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Fig. A21: Test Set DATA11.

Fig. A22: Test Set DATA12.
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Fig. A23: Test Set DATA13.

Fig. A24: Test Set DATA14.
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